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'jAn approach to the analyses of discrete-valued time series is discussed.
The analyses are accomplished in the spectral domain using the Walsh-Fourier
transform which is based on Walsh functions. This approach will enable an
investigator of discrete systems to analyze the data in terms of square-

waveforms and sequency rather than sine-waves and freguency.
r !/«0 vpor g *
—we developg\ general signal-plus-noise type model for discrete-valued
AR Y
time series in which Walsh-Fourier spectral analysis is of interest. MWe con-

siderjthe problems of detecting whether or not a common signal exists in
repeated measures on discrete-valued time series and in discrete-valued processes

[
collected in an experimental design.‘fhe showhihaf these models may depend on

/""

—~—

unknown regression parameters and we develop)consus?enf es?imafes of these para-
art. L,-cfv

meters based_gg the finite Walsh-Fourier fransform/‘ Applications to certain

Markov models are given, however, the methods presented also apply to non-Markov

. & cases.

— Tl o9F
.. Lt P%. ¥

me e

Lt o

W ERTLIL
NP 2 T A e i
N e =T

»-/'
)-!i““‘n/ al
:..- &bixi'f" Coﬁ%‘
' Fvail anc/e¥
gpocial

.: GD

L]

B O




i' —*m

&

15: 1
:’ﬁ;

2y

A :a

h 1. INTRODUCTION

:ﬁl Implicit in the Fourier (trigonometric) analysis of time series is one of
l’Q ) -

o

" two extreme assumptions about the process: (1) The very long stretch of the

time series is the only time series we want to consider and consists of the
‘g! superposition of not too many sinusoidal terms of substantially different
o frequencies; and (2) The time series is to be regarded as a realization of an

erqodic Gaussian process. |t is one of many possible time series and the analyses

vz are directed toward the properties of the ensemble of the series, not toward

é those of a specific realization (cf. Brillinger and Tukey (1982)).

;’ There are, however, many physical situations in which time series are either
?g' positive or discrete and are patently non-normal so that fhé analyses cannot be
2; handled by transforming the data and applying Gaussian techniques (see, for

example, Lewis (1980), p. 154). Similarly there are processes, such as those

S
e

which take values in a discrete finite set, which can neither be thought of as

ﬁ, Gaussian, nor as the superpositions of well separated sinusoids. Models for

‘%, discrete-valued time series which have an ARMA structure are considered in

;ﬁ. Jacobs and Lewis (1978 a,b, 1983) and in Lewis (1980). For the case of continuous-
53 valued non-normal time series it is perhaps still reasonable, in appropriate cases,
iﬁ to do spectral analysis via trigonometric methods. However, in the cases where

%? time series take values in a discrete (and possibly finite) set, it makes little

;éj statistical sense to correlate the data with sines and cosines. As an alternative,
‘ we suggest that the spectral analysis of discrete-valued time series be accomplished
§: in the "sequency" domain via the Walsh-Fourier transform (cf. Ahmed and Rao (1975),
SE Kohn (1980 a) or Morettin (1981)). This seems to be a natural aiternative to

;; the usual Fourier analysis since the Walsh-Fourier transform is based on the

5, "square-wave" Walsh functions. This approach would enable investigators to analyze
5; discrete~valued time series (which we may think of as square-waveforms) in terms
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of square-waves and sequency (switches per unit time) rather than sine-waves

and frequency. As emperically demonstrated in Beauchamp (1975), "the respective
roles of Walsh and Fourier spectral analysis for discontinuous and smooth-
varying waveforms are clear. Where the signal is derived from sinusoidally-
based waveforms, Fourier analysis is relevant. Where the signal contains sharp
discontinuities and a |imited number of levels, Walsh analysis is appropriate™.
The Walsh functions, which are defined via the Rademacher functions (cf.
Ahmed and Rao (1975), Kohn (1980 a) or Morettin (1981)), form a complete ortho-
normal sequence on [0,1) and take on only two values, +1 and -1 (or 'on'
and 'off'). They are ordered by the number of zero-crossings (or switches)
which is called sequency. Let W(m,X), n=20,1,2,..., 0 < A < 1, denote the
n-th sequency-ordered Walsh function, then W(n,+) makes n zero-crossings in
£0,1). The first eight discrete, sequency-ordered Walsh functions, W(n,m/N),
m,n = 0,1,...,7, corresponding to a sample of length N = 23 are shown in
Figure 1.1 inan 8 x 8 symmetric matrix called the Walsh ordered Hadamard
matrix, Hw(3). See Appendix A for details. We note that other orderings exist,
for example, Paley order and Hadamard order are often used (cf. Ahmed and Rao
(1975)), however, sequency or Walsh ordering is more natural in that it is
comparable to the frequency ordering of sines and cosines. We will discuss

methods of generating the discrete Waish functions in Appendix A.
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FIGURE 1.1: Sequency-ordered discrete Walsh functions, W(n,m/N),
n,m=20,1,...,7, for a sample of size N = 23 as the
rows of a Hadamard matrix.

Walsh spectral analysis has been used for several purposes, primarily in
the Engineering sciences, such as speech processing, word recognition, image
coding and transmission, filtering and multiplexing. |t has also been used to
describe biological and medical systems such as monitoring EEG and ECG signals.
See, for example, the Proceedings on the Applications of Walsh Functions, Ahmed
and Rao (1975), Beauchamp (1975) and Harmuth (1972) to mention a few. Appli-
cations of Walsh functions in the statistics |literature are rather scarce and
we mention two. Ott and Kronmal (1976) use the Walsh transform in classification

and prediction problems for strictly stationary binary time series. Stoffer and

Panchalingam (1985) analyze simulated and real binary time series in the

; sequency domain.

E§ At present, there are two modes of development of Walsh spectral analysis
i* in the literature. The first mode is termed Walsh spectral analysis and is

E? developed via the concept of dyadic stationarity. That is, it is based on

i:é‘ processes {X(n); n =10,1,2,...} for which CoviX(n) ,X(in@® m)) = B{m) is a
i
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function only of the dyadic distance between n and né&m, where ném
denotes the dyadic addition of n and m (cf. Morettin (1974 b, 1981) for
definitions, discussions and references). In this mode, one has in mind that

the process of interest is the superposition of not too many Walsh functions

K
of substantially different sequencies, that is, X(n) = Z Z(k)W(n,Ak) where
k=1
Z(1),...,Z(K) are uncorrelated random variables with mean zero and variance
ai. k=1,...,K, with AI....,AK constants, Ai # AJ. i # j. The other

mode of development is termed Walsh-Fourier spectral analysis and is based on

real time stationarity. Theoretical results concerning the statistical appli-
cation of Walsh-Fourier spectral analysis are relatively recent and to the best
of my knowledge, are |imited to the works of Kohn (1980 a,b), Morettin (1974 a,
1981, 1983) and Stoffer (1985). One is warned that in the examination of non-
mathematical |iterature concerning this subject, to keep in mind that the two
different modes exist, although the particular mode is not always apparent.
This matter can be quite confusing since the results are considerably different
and results from one mode do not typically apply to the other. An excellent
review of the two different approaches is given in Morettin (1981). We believe
that although dyadic time has some theoretical appeal in the Walsh spectral

domain, due to its strange behavior (see, for example, the discussions in

Robinson (1972) and Beauchamp (1975)), it is of little practical use. We there-

fore, concentrate on real time stationary processes.

A brief account of the existing Walsh-Fourier theory as well as some new
results and necessary tools to be used in the sequel are given in the next
section. In Section 3 we present a general signal-plus-noise type model for
discrete-valued time series in which Walsh-Fourier spectral analysis is of
interest. Next we consider the problem of detecting whether or not a common

signal exists in repeated measurements on discrete-valued time series. It is
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shown that this method extends to discrete-valued time series collected in an experi-

-

mental design. Then, we consider the analysis of discrete signal-plus-noise
models in a regression setting in which the signal is observable but the

process depends on regression parameters. Our main goal is to estimate, via
Walsh-Fourier spectral methods, the regression parameters and the noise spectrum.
In all cases we give concrete examples by showing that certain Markov chains
satisfy our models, however, the methods presented here also apply in non-
Markov cases. For completeness, we provide a discussion in Appendix A on simple
and economic methods for generating the discrete sequency-ordered Walsh functions

and hence the finite Walsh-Fourier transform.
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N 2. PRELIMINARIES

! In this section we give definitions, establish some new results, and give
¥ a brief summary of the existing Walsh-Fourier theory for stationary time series
which we use in the sequel. In particular, we concentrate on those properties

which we can directly apply to discrete-valued time series. Hence, for

‘- e

o

s

example, we do not consider properties of processes which are generalized |inear
processes; such processes can be handled by the theory given in Kohn (1980 a,b),

Morettin (1983) and Stoffer (1985). At present, our discussion will be for

Ry
o -

univariate time series, the multivariate versions follow in an obvious way and

-

: we mention them briefly at the end of this section.
1
g Let X(0), X(1),...,X(N-1) be a sample of length N = 2P, p > 0 integer,
u
uﬂ from a weakly stationary time series, {X(n), n =0,%1,#2,,..}, with absolutely
: summable autocovariance function, vy(h) = Cov(X(n),X(n+h)), h = 0,%1,%2,... .

é We assume for now that the constant mean value of X(n) is zero. Let W(n,))

2 be the n-th Walsh function in sequency order, and let

;

[N N- 1
K A = N2 Xm0, 0 g a <1 (2.1)
: n=0
@
't

be the finite (or discrete) Walsh-Fourier transform of the data. The logical

2? covariance of X(n) (cf. Robinson (1972) or Kohn (1980 a)) is defined to be

2_

it

; o M

t(j) =N T y(je&k - k)
& k=0
g
" where by j @ k we mean the dyadic addition of |j and k. It can then be
‘ L)
shown (cf. Kohr (1980 a)) that the variance of dN(A) is given by

N

i‘

S

‘
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i N-1
e var{d (M)} = T t(jIW(j.0). (2.2)
. j=0
jg, Taking the limit (N + =) in (2.2) we have that Var{d,(A)} = f(1) where
aﬁﬁ
A fA) = § t(PW,A), 0 <<t (2.3)
Mt j=0
’v:(“":
e
i is called the Walsh-Fourier spectral density of X(n). We note that (1)
oy exists since the absolute summability of vy(h) implies the absolute summability
.i' .'
iﬁ? of t(j). Specifically, Kohn (1980 a, Lemma 3) shows that if
AN
i
Lx "
N tim Y (= ]j172") |y()] ¢ = (2.4)
R N | .0oon
o | ] <2
B) ) r
:‘: l} o
then | [1(j)] <= and f(A) is well-defined.
Jj=0

£ X(0),X(1),...,X(N-1) is a sample of length N = 2”7, the finite trans-
form (2.1) is calculated for AN =m/N, m=20,1,...,N-1. Since the discrete

Walsh functions are symmetric in their arguments for N = Zp, that is,

W(n,m/N) = W(m,n/N), m,n =0,1,...,N-1, (2.5)

. the vaiue of >‘N in the finite Walsh-Fourier transform corresponds to sequency.
,
":r : As with the usual Fourier analysis, if the mean of the series is unknown, the
L'y
only sequency of the form >‘N = m/N for which the transform cannot be evaluated
Tt
{" { is at the zero (m = 0) sequency. To see this, let 6 = EX(n), all n, and
i) .
«3 note that for m = 0,1,...,N-1,
L R
B
,O.... _' N"I
s NCOT Wnm/N) = 8T, (2.6)
O n=0 °
.l.‘ !
o
W
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where 6 is the Kronecker delta. See Kohn (1980 a, Lemma 1). It is clear
from (2.6) that the mean centered transform will be the uncentered transform
except at m = 0, and in particular

1

N~
172 Y eW(n,m/N) =N

n=0

E{dy(m/N)} = N 1/24m

m=20,1,...,N-1,

Kohn (1980 a, Corollary 3) gives the following useful results on the con-
vergence of the second moment of the finite Walsh-Fourier transform under con-
dition (2.4). Let A, be dyadically rational (that is, its binary representation

N
is finite). If A ®r >0 as N =2P + , then

2
E{dN(AN)} +- f()). (2.7)

In general, the asymptotic covariance of the Walsh-Fourier transform at two

distinct sequencies is not zero (cf. Kohn (1980 a), Theorem 3). However, if

. . =1
AN and Ay Ny 2re dyadically rational and IAI,N AZ,NI >N

i =1,2 as N =2° > =, then

with X, ®xr >0,
i,N

E{dN(A"N)dN(AZ'N)} + 0.

Various authors have established central |imit theorems for the finite
Walsh-Fourier transform under a wide range of conditions (cf. Kohn (1980 a),
Morettin (1983) and Stoffer (1985)). We state three versions which are applicable
to discrete-valued time series. The first version (Assumption 2.1) follows its
trigonometric counterpart given in Hannan (1973) and can be found in Kohn
(1980 a, Theorem 4). The second version (Assumption 2.2) follows its trigono-

metric counterpart based on the existence of higher moments given in Brillinger

0
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(1975) and can be found in Morettin (1983, Theorem 1). We remark that the
above two versions exist side by side and that neither is inciuded in the
other (cf. Morettin (1983)), The third version (Assumption 2.3) is similar to
Stoffer (1985, Theorem 3.1), however it is sufficiently different to warrant a
proof which is provided in Appendix B. This version establishes a central
limit theorem for discrete-valued second-order stationary processes which

satisfy a type of finite dependence property.

ASSUMPTION 2.1: X(n) is strictly stationary with zero mean. Let Fn be the

o-field generated by {X(j), j < n}; put

2.1/2
= - )
a; = CEEX() | F 0 ECn) | F_ 305,

F is trivial and § a6 < =,

ASSUMPTION 2.2: X(n) is strictly stationary with zero mean and finite moments.

Let Cr(Jl""’Jr) = Cum{X(J1)....,X(jr)} be the r-th cumulant of X(n),

Jpreeeedn = 0021,22, 000 1. I oIC Gpseeni 2 < =
J1=0 Jr-1=0

ASSUMPTION 2.3: X(n) is second-order stationary with zero mean and covariance
2+6
}

function (k). suan{IX(n)l < » for some & > 0. Let Fn be the o-field
generated by {X(j), j < n}. There exists a positive integer « such that
(i) E{X(n) | Fooe} =0 a.s., and (i) E{X(n)X(n+k) | F_ol = v(k) a.s. for

k = 0,1,000,k"1,

If condition (2.4) and either Assumption 2.1, 2.2 or 2.3 hold, then dN(A)
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%;' converges in distribution to a normal variate with mean zero and variance f(})
gg% given by (2.3). We note, for example, that discrete-valued time series which
ok

r;f are based on mixtures, such as the discrete MA processes described in Jacobs
%!ﬁ and Lewis (1978 a,b, 1983), Lewis (1980), and the geometric processes discussed
gﬁ in Langberg and Stoffer (1985), satisfy the dependence properties of Assumption
jé:' 2.3.

;&? In order to be able to consistently estimate the Walsh-Fourier spectrum,
ﬁ%‘ we need asymp+o+fc results for smoothing the Walsh-Fourier periodogram,

{3 IN(AN) = dﬁ(AN). We now state the following results in a theorem for use in
ﬁﬁﬁ the sequel. The theorem combines the three previous central limit theorems

?ﬁf with a theorem given in Kohn (1980 a, Theorem 4).

X THEOREM 2.1: Let condition (2.4) and either Assumption 2.1, 2.2 or 2.3 hold.
¥yt = i . -
; , Let Aj,N J/N, 1 < j < N-1, and suppose for {XJ(I).N'°"'AJ(M),N}'
L, =1
Lo 1) ® = -
:lvﬁ A i(m) N ©r>0 as N+>=, m ;),....M and IAJ.(L)'N Aj(k)’Nl >N for
i = = 1
5 L4k, &k =1,...,M. Then d  +N(0,s) where d (dN(AJ(1),N)""’dN(Aj(M).N))
3ff and A is an M x M diagonal matrix with f(A) along the diagonal. Also
o
) |
B D 2 |
Ay t !
gNgN > f(A)xM (2.8) !

N
L
2 -1 , . . 2 |
334 so that M gNgN is an estimate of f(X) having variance 2f ()A)/M. |
9 |
;%; If wo let M>» as N+ o with M/N+ 0 in Theorem 2.1, the smoothed

ﬂ
< i periodogram M-]g&gN is a mean square consistent estimate of the Walsh-Fourier
' :
s spectrum f(A), 0 < A < 1.
%Q? Results obtained for the univariate finite Walsh-Fourier transform carry
}g} over, in an obvious way, to the vector case, say X(n) = (X1(n)....,Xr(n))', except
)

. ) [y < AN K O LY (% "‘_" ChULY T Tt A T o e T T ""..‘.'.
‘:‘)"“i"“"i"’lv‘:.l»l.:%"\“'k (LA b’:\‘;‘l""l A t‘!‘.’!‘l‘-' AN M A .‘g’ ¥ -..’.‘a.“l‘gi . # & 'F .' AN L‘. .‘.‘?..' [ X W el o
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that (cf. Kohn (1980 b), Section 3)
) : (1) The logical covariance will now be r x r matrices given by

o - N-1

‘ t(j) =N ! Z {r(j@®@k - k) +IT'(j®k - k)} (2.9)
R k=0

13” where TI(h) is the r x r autocovariance matrix of

X(n) = (X, (n),...,.X (n))?',
~ 1 r

KA (2) The Walsh-Fourier spectrum f(A) is an r x r real positive

o semidefinite matrix.

)
o (3) Cov{lij(x)lzm(k)} > fiz(x)fjm(x) + fim(A)flj(A) (2.10)

as N + = where IiJ(A) is the (i, j)-th element of the r x r

'
\uﬁ per iodogram matrix IN(A) = gﬁ(x)g: (A) with
N-1
172 I X(nW(n,A).

: X
\ gu(A) = N
2"“ N n=0

' “.‘v
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3.

SIGNAL-PLUS-NOISE MODELS FOR DISCRETE-VALUED TIME_SERIES

In this section we discuss models for discrete systems in which Walsh-
Fourier analysis is desirable. We consider a discrete version of the signal-
plus-noise models used for sinusoidal and for Gaussian processes. In general,

write the r x 1 vector, discrete-valued time series as
X(n) = §(n) + g(n), n = 0,%1,%2,.., (3.1

where $S(n) is a random stationary discrete signal which possibly depends on
unknown parameters 8 = (61.....eq)'. and ¢(n) is a zero-mean discrete-

valued process (possibly white noise) which is uncorrelated with S(n). We

note that the support of X(n), S$(n) and e(n) need not necessarily be the

same and that there may be some dependence structure between $(n) and g(n).
For a specific example of such a process, consider a macro model on a

finite state space (cf. Basawa and Prakasa Rao (1980)). Let Xj(n), J = 1heee,r

denote the number of individuals in state j at time n. In particular, XJ(n)

is the aggregate over several independent chians evolving simultaneously. Let

eJ. J=1,...,r, be the probability of being in state | at any given time,

and let Q denote the total number of individuals under consideration. Denote

the r x 1 vector X(n) = (x1(n),...,xr(n))' and suppose that X(n) is Markov

with transition probabitities piJ' 1 <i,j<r. Then, for n=1,2,...,

r
EX.(n) =
J -Z

EX.(n=-1)p,., V1 < jcr,
=1 F

from which we obtain the signal-plus-noise model
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i xj(n) = z X (n-1)p it sJ(n), te<jer, (3.2)
i=1

where g(n) = (el(n).....er(n))', n=20,1,2,..., is a zero-mean multinomial-

g : type white noise process and is uncorreIaTed with the random signal
K S(n) = (S‘(n)....,sr(n))'. SJ(n) = |§l X, (n-l)p g 1 <jcr. To see that
% e(n) and $(n) are uncorrelated, first consider one individual at a time and
! tet Y.,q(n) =1 if individual q is in state j at time n, and Y.' (n) =0
} otherwise, 1 < q<Q, 1< j<r. Denote the corresponding error term by
v; wj,q(n)’ that is, write Yj,q = |§l Y. .q(n-1)pij + wj.q(n). Then for 1 < q < Q,
£ jok = 1,...,n,
r
R
i Cov{wj.q(n).Yk’q(n-l)} = Cov{YJ.q(n) - g Y. . (n-l)pij,Yk'q(n-l)}
g = 0P T 0P = O
i
g Noting that eJ(n) is the aggregate of the independent individual error terms,
g ej(n) = ?1 w,'q(n), and that Sj(n) is the aggregate of the independent
' q=
é individual signal terms, SJ(n) = qgl izl Y, ’q(n-l)p .» we see that ¢(n) and
i S(n) are uncorrelated. Hence, we have exhibited a model of the discrete-valued
E: signal-plus-noise form given in (3.1) where, in this case, the signal S(n) is a
E function of the r2 transition probabilities, pij' i,J=1,...,r.
For the signal-plus-noise model presented in this section, Walsh-Fourier
X analysis would be useful for detecting whether or not a discrete signal exists
: in a given system, and if so, determine the cyclic behavior, in terms of sequency,
i of the signal. Moreover, for discrete systems in which the signal is observable
; but the process depends on unknown parameters, Walsh-Fourier methods can be used
3 to consistently estimate the parameters as well as to consistently estimate the

'l. ) Gt JR0 ""' S0 0 COLTN TR
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error spectrum. We discuss these types of analyses in the following subsections.

3.1 Detecting a Common Signal

Now, consider the problem of detecting whether or not a common discrete-
valued signal exists in Q replications of a discrete-valued time series
{Xq(n)}, q=1,...,Q which are of the signal-plus-noise form (3.1). Many of
our techniques follow those of their trigonometric counterparts developed by
Brillinger (1973; 1975; Section 7.9; 1980).

As an example, suppose we wish to analyze Q independent queueing situations
hypothesized to be similar. Let Xq(n). q=1,...,Q0, be the number of
individuals in queue q at time n and suppose that Exq(n) = eq for all n.
Let S(n) be a zero-mean stationary discrete-valued signal hypothesized to be
common to all queues, such as a rate of change in the number of individuals in
a8 queue, and let eq(n). q=1,...,Q be stationary zero-mean discrete-valued
processes with common Walsh-Fourier spectrum. Whether or not a common signal
exists among the Q queueing situations is expressed in.whether or not the
signal, or equivalently its Walsh-Fourier spectrum is identically zero.

In genera!, we suppose that the discrete system is of the form Xq(n),

g=1,...,9; n=20,1,...,N-1, N = 2p. p >0 integer, and can be modeled as
X (n) = + S(n) (n) (3.3)
q ® * €q

where eq are constants, S(n) is a realization of a stationary discrete-valued
time series with mean zero, and gq(n). q=1,...,Q0, are independent reali-
zations of a zero-mean discrete-vaiued stationary time series which is un-
correlated with S(n)., Let yss(h) and Yee(h)' h=0,¢1,+2,..., denote the

autocovariance functions of S(n) and eq(n). 1 ¢ q<¢<Q, respectively. We
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assume that vy_..(h) and Yee(h) satisfy condition (2.4) and that every linear

SS
combination of S(n) and eq(n), 1 < q¢<Q, satisfies either Assumption 2.1,
2.2 or 2.3. Denote the logical covariances of S(n) and eq(n), 1<q<0Q

by t..(j) and ree(j), respectively, and the respective Walsh-Fourier spectrum

SS
of S(n) and eq(n), 1<q<Q, by fss(x) and fee(k), 0 <x <1, The

following conditioins hold:

(1) EX (n) =9,
q q

o . . |
(2) Ty X (j) = TSS(J) + Tse(J)' !
q q
(3) fx X (y) = fss(X) + fee(l),
qq
(4) = (J) =T (J)v q # Ln
XXe ss

5) f () =f_ ), q#&
Xar SS

Before we proceed with the analyses we need the following lemma.

LEMMA 3.1: Let {Xn} and {Yn} be sequences of random variables on a probability

space (2,F,P) such that for all n, Exﬁ < = and EYﬁ ce. 1f X 2 x,

P 2 2

v 2y, o s ex%, and EYﬁ +EY? as n + =, then EX Y+ EXY.

PROOF: By Chung (1974, Theorem 4.5.4) the conditions Exi < ©, Xn B X, and

2 2

EX_ + EX® imply the uniform integrability of {lxnlz}. Similarly, {|Yn|2} is

uniformly integrable. By the Cauchy-Swartz inequality,

1/2

2 2 .1/2
£ I Y 4P ¢ c{ |X|“dP1 E{ Y, |"dP]
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for any set A ¢ F and hence by Chung (1974, Theorem 4.5.3), the uniform

integrability of {|xn|2} and {lYn|2} imply the uniform integrability of
p

{Iannl}' Clearly XY XY and EX Y <=, all n, hence by Chung (1974,

Theorem 4.5.4), EXnYn + EXY.

The particular analyses of this section are based on the following

theorem.

THEOREM 3.1: Let {Xq(n); gq=1,...,Q; n=0,...,N-1} satisfy the model

conditions (3.3). Let A m=1,...,M be defined as in Theorem 2.1.

-1/2 Ni‘ N

n=0

j(m) ,N’

Then the finite Walsh-Fourier transform dN (

»q AJ(m),N) =N

(n)W(n,A
q n

1 < 9 < Q, has the representation

+ 2 a.s. (3

dN,q(Aj(m).N) * Yn q,m

as N + = where the u, are independent N(O,f..(\)) variates and the =z

SS q.m

are independent N(O,fee(k)) variates. Moreover, U and zq m 27 mutually

independent, 1 <m<M, 1 <qc<0.

PROOF: Taking the finite Walsh-Fourier transform of (3.3) we obtain

( = ¢3¢

N, g jem N = NP jemy N Y

€
N jm N teas@

where d:(-) and d° q(-) are the Walsh-Fourier transforms of S(n) and eq(n

respectively. The constant term drops out in view of (2.6) and the fact that

Aj(m) N # 0. Invoking Skorokhods Representation Theorem (Skorokhod (1956)) and
S £ .
Theorem 2.1, dN(Aj(m).N) and dN,q(AJ(m).N) have the representations

A T T

Jj(m

y N

.4)

),

»

L AREEN
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%ﬂ ds(x ) »u_ a.s. and d° (A ) »2z a.s. as N > » where the
: N "j(m),N m N,q " j(m),N q.,m
Wy u_are independent N(0,f..(A)) variates and the z are independent
‘ii:, m SS q,m
fﬁ N(O.fee(k)) variates. |t remains to show that Un and Zq,m are mutually
& ' independent and since they are jointly normal, it suffices to show that they
éﬁ are uncorrelated. Since S(n) and eq(n) are uncorrelated we have that
ey
) S € . . -
&. E{dN(AJ(m),N)dN,q(AJ(m),N)} =0 for afl N, m=1,...,M, and q=1,...,0.
Rl
3 Since yss(h) and Yee(h) satisfy condition (2.4) we have by (2.7)
r;l' 5 2 € 2 [ ]
::g:' E{dN(AJ(m),N) }+fss(l) and E{dN,q()‘j(m),N) }-»fee(l) as N+w®, 1<mcM,
¥ S £
| 1 < q<Q. Thus by Lemma 3.1 we have E{dN(Aj(m),N)dN,q(lj(m).N)} *> E{uqu,m}
‘:"' ) = = =
{; as N~ and hence E{umzq’m} 0, m 1,...,M, q 1,...,9.
3
o
i‘ Using the representation (3.4) +e may proceed with the problem of determining
18
® whether or not a common discrete-valued signal exists. Our analysis follows
{ that of the analysis of random effects models (cf. Scheffe (1959)). Consider
&
ﬂﬁ the quantities
o
(1
fé‘ d, O -1 3 d M
W TRRLETES I M ) Nq  jem,N'» P EMS
e q=1
o
‘i:p
- M
o T ¢ ) (3.5)
i S N Tjtm N
N m=
b b
ool
R Q M 2
D) CdN'q(AJ,(m)'N) - dN'.(AJ(m)'N)] . (3.6)

qg=1 m=1

[ N Wy MY NP

By Cochran's Theorem and in view of the representation (3.4), the quantities

(3.5) and (3.6) have the almost sure representations

W B W WL Y T o W M W g oy W N
"’\ .:. X 5;,\;.)-\‘.«. S s
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2 2
m§1 (um + z"m) = Efss(x) + fse(x)/Q]xM a.s. (3.7)
and
Q M ) )
q§1 mZ, (Zom ™ Zom = feeP -1y 25 (3.8)

respectively, as N + =, where the x2 variates in (3.7) and (3.8) are
independent. The fact that the x2 variates are independent follows from the
fact that Cov(z -z »Z ) =0,

q,m “e,m’ "e,m

The test of the null hypothesis that there is no common signal, S(n) = 0

or equivalently f_.(A) = 0, may be examined for par?icular sequencies A by

SS
compar ing
M 2
) mZI dN"(XJ(M).N)/M
g M (3.9)
2
Cdy O, (, )I°/MQ-1)
q=1 mE, N.q " j(m),N N,« " j(m),N Q
with an FM,M(Q-I) distribution. In view of (3.7) and (3.8), (3.9) has the
representation
Cf ) +Q fss(k)] - .
fee () M,M(Q-1)
3s N » o,

Using the representations (3.7) and (3.8) it is easy to find an asymptotically

(N > ») unbiased estimate of the Walsh-Fourier spectrum fss(x) of the un-

observed signal, say £..00), 0 <. Denoting the numerator of (3.9) by

SS
Q ?ii(x) and the denominator of (3.9) by ;es(x) we see that the desired
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Ao quantity is
,lgl
e fee) = foo) - Q71 £ (1) (3.10)
,::20 SS XX €€ ‘ *
"'fﬁg
";. We note that due to the invariance properties of maximum |ikelihood estimates
o
Oy
‘ﬁl; (MLEs) and the fact that the asymptotic distributions of the transforms are
_." ) a
ﬁﬁh Gaussian, the estimate fss(x) in (3.10) is also the bias corrected MLE of
AN
f S(A) is an asymptotic (N + =) sense.
o °
::‘ Next, we consider a one-way design. Suppose now that L different treat-
)
3 8
g? ments are replicated on experimental units and stationary discrete-valued time
AR
%J: series are recorded for each of the units. For example suppose L treatments
a;gil
g%{ are given to groups of patients (Q patients in each group) who suffer from
25
s%& a particular allergy. and we record the number of allergic reactions per day of

each patient for N days. The data coiiected will not only be discrete count
data, but for many allergies it is mostiy on the order of 0,1,2,3 and very
seldom above this. Hence, a Walsh-Fourier as opposed to trigonometric de-
composition of the observations would be more useful. This type of design is

similar to the balanced one-way random effects design considered in Scheffe

(1959, Section 7.2) and in Brillinger (1980, Section 4.2). Specifically, for

2y q=1,...,Q, £=1,...,L, n=0,1,...,N-1, N=2P p > 0 interger, let

e

)

A qu n eqz + Sz(n) + eql n) (3.11)
where eQL are constants; Sz(n) are L independent stationary discrete-valued

time series with mean zero, logical covariance (j) and Walsh-Fourier

Tss

spectrum f_.(1); and eqz(n) are independent realizations of a zero-mean

SS
discrete-valued stationary time series with logical covariance ree(j) and
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Walsh-Fourier spectrum fee(x). As in the model (3.3), Sz(n) and eqz(n)
Wt are uncorrelated, q=1,...,0, however Sj(n) and qu(n) are mutually
independent for j# £ and g=1,...,0. We assume that every |inear com-
bination of Sz(n) and eqz(n), q=1,...,Q0, satisfies either Assumption 2.1,

N 2.20r 2.3, £ =1,...,L. Under the mode! assumptions we have

; (1) EX ,(n) =9

¢ ol o’
N (2) = (j) = (j) + v (),
X p,X ss €€
E ¢l el
A (3) f () = f_ ) +f ()
“ 1]
A quoxq‘e SS €€
. (4) (j) = v_.(Jj), q#p
f (5) fx X () = fss(x). q#p.
| 9% Pg
s
$ I+ is seen that the coherence between any two observations in the same treatment
\
3
; is
a
r fSS(A)/EfSS(A) + fee(x)].

This corresponds to the intraclass correlation coefficient discussed in Scheffe

§ (1959).

_' Taking Walsh-Fourier transforms in (3.11) and following Theorem 3.1 we have

ke the representation

&

i: dN,qL(Aj(m).N) = Uy ¥ zq&m a.s. (3.12)
d

r as N+ o, m=1,,..,M, where the Uom are independent N(O.fss(x)) variates

i% and the z.,, are independent N(O,fee(x)) variates which are independent of

At wIAS -
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oy the up » alt q, £ and m. Using the representation (3.12) we consider a test
& for determining whether or not there is a treatment effect, that is, whether
L | or not Sz(n) =0 for £=1,...,L, and all n. Equivalently, we test

53 whether or not f..(A) =0, 0 < A < 1. We may now follow the one-way random

SS
o effects analysis given in Scheffe (1969, Section 7.2). Define

Q
-1
Iy, £ jm N = € qzl I, gt P jm N TEmeM

Ia
3

I
=

L -1 L
e, dN'..(AJ(m).N) =L z; d

;~ and appropriate sums of squares
|
!

2

| ML
9 Q ! 7V Cd )] (3.13)

‘: m=1 2=1 N,'L(Aj(m),N) B dN."(AJ(M),N

) hf Ii g 2
ity Cd (, ) = d, (A D (3.14)

In view of (3.12), (3.13) and (3.14) have the almost sure representations

! @ I T Cup vz -u -z 0 (3.15)
o and

§ (z , -z ,) (3.16)

e respectively, as N - », We may carry this representation one step further and
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represent (3.15) and (3.16) as
[Q fgg) + f (11 a.s (3.17)
SS M(L-1) e :
and
fx a.s (3.18)
€€ ML(Q-1) te ‘
as N =+ =, where the x2 variates in (3.17) and (3.18) are independent.

The test of the null hypothesis fss(x) z 0 now follows easily in view of

(3.17) and (3.18). For a particular sequency A, compare the statistic

M L
2
? mEI LZ] I:de'LO\J(m);N) B dN."(AJ(m),N)J /M(L=1)
M L § ”
mZI 521 =1 |:dN.qZ(A\j(m),N) - dN,.g<AJ(m)’N)J /ML(Q-1)

with an F distribution.

M(L-1),ML(Q-1)

To estimate the Walsh-Fourier spectrum of the signal, f..(1), one may use

SS

representations (3.15), (3.16), (3.17) and (3.18). That is, the expected value

of (3.15) divided by M(L-1) (cf. 3.17) is Q fss(k) + fee(k) and the expected

value of (3.16) divided by ML(Q-1) (cf. 3.18) is fsE(A). This is similar to

the previous case (cf. 3.10) and one may proceed as was done there.

As suggested in Brillinger (1973, 1980), it is helpful to graph the above

statistic as a function of sequency, A, and to further indicate the null significance

on the graph. However, in doing so, one must keep in mind that the asymptotic

(N + =) covariance of the Walsh-Fourier transform at twn distinct frequencies

is not necessarily zero in contrast to the trigonometric case.
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:;,_‘gg‘ 3.2 Estimating Regression Parameters When the Discrete Signal is Observable
RIT In this section we concentrate on the discrete signal-plus-noise model

Y

[ At e

‘: ‘;ﬁ: where the signal is observable but the vector process of interest, X(n),

405

’1"‘ n=20,1,...,N-1, depends on unknown regression parameters. At the end of

=™

o this section we apply the results of this section to estimating the transition
L

, ‘._‘:j matrix in a Markov model. We suppose that we may write the model (3.1) in the
)f‘-\’

:: r x 1 vector form

R

qé X(n) = 8 + 8 $(n) + e(n), (3.19)
I

o

.A-l

_ where 8 is an r x 1 vector of constants, $(n) is a gqx 1 vector,

PR

::::‘:’1 observable discrete-valued signai, 8 is an r x q matrix of regression para-
sl

meters, and ¢(n) is a discrete-valued zero-mean white noise process which is
AR

] uncorrelated with the signal $(n). Let I‘ss(h) denote the autocovariance

< ©

1n}_-,‘\ matrix of $(n), where Z_m ||Pss(h)|| < », Further, we assume that every linear
W

"’.‘"\{;} combination of the components of g(n) satisfy either Assumption 2.1, 2.2 or
(1

J 2.3. Let t..(j) and t__(j) be the logical covariance matrices of S(n)

0 SS €€ =

Al

a'*f': and g(n), respectively (cf. 2.9) and note that TEE(J) =0 for j#0 where
-.“\1 r

Ay

4:" : 0 is the r xr matrix of zeroes. Let f_.(Xx) = {f (M}, 1 <a,b < q,
K r SS Sa'sb - -
- be the q x q positive definite Walsh-Fourier spectrum of $S(n) and let

1Hhs

-?'2 f (A) = {f (M)}, 1 <a,b<r, be the r xr Walsh-Fourier spectrum of

R -5_..* €€ €a°%p = -

10 g(n).

[l

T ) Taking transforms in (3.19) and following the previous section we have the
)

D) 'y

::0., N representation

i',g v

1) ! X S

TL ‘ = (1 ’ = ]roo-DMo .
ey WA jm N T E RN N Bt Qas P (3.20)
N

,'.‘:05
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where Qa s (1) denotes a vector variate tending to the zero vector almost

surely as N » =, z, are independent multivariate N(Q,fee(k)) variates;
1 N-1

N-
-1/2 S =172
) §(n)W(n,AJ(m).N) and ¢ (A ) =N nZo §(n)W(n,AJ(m)'N

n=0 J{m),N
denote the r x 1 and q x 1 finite Walsh-Fourier transforms of the vector

92‘*J<m>,u’ =N
time series X(n) and $S(n), respectively.

If we assume that M > q+r, we may consider the asymptotic problem of
estimating the parameter matrix B and the error spectrum in the multivariate
analysis setting (see Anderson (1958), Chapter 8). Similarily, tests of hypotheses
about the elements of B may be carried out by MANOVA techniques with an
appropriate partitioning of that matrix (cf. Anderson (1958), Section 8.3).
Following least squares theory in view of (3.20), the estimate of B as a

function of sequency is given by

=

M
=ty 1> (a ik ¥ dSa )d>
N N
m=1 m=1

~

! -
8 Aoy W03 ! (3.21)

N Jm NN P jemy N jm NN P 5em N

and the corresponding estimate of the error spectrum fee(k) is

M
sMUN, X oA S X
fe’e(k) =M mzl [gNtxJ(m)'N) BM.N(A)gN(AJ(m).N)JEgN(AJ(m)’N)
-5 uda )1t (3.22)
M,N"TOSNT T jCm) N :

- aM,
Before discussing the consistency of the estimates BM N(A) and fe :(A),

we staie the following results which follow from the mode! assumptions and the

results of Section 2. First, denote

aX P Jhot 4 o = W (- ( 4 (4"5' \-\'\‘.'.-U-‘..'. . "'.v"‘.,.‘," ",
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M,N a Mo S
fg' g (A) = M § dN,a(Aj(m),N)dN.b(AJ(m),N)' 1<a,b<aq (3.23 a)
a b m=1
M,N -1 M € S
f .Sb(x) = M m§1 dN.a(AJ(m),N)dN.b(AJ(m),N)' <ac<r, 1<bcgq (3.23 b)
and
M,N -1 M € €
f e (M) =M Z dN,a("j(m),N)dN,b“J’(m).N)' l1¢<a,bgcr (3.23 ¢)
a’’b m=1
where dz a(-) and d; a(-) denote the finite Walsh-Fourier transform of the

a-th element of $(n) and ¢g(n), respectively. Then as M,N > = with M/N + 0

we have
(1 E fg'Ns A >t o ),
a'“p a'"b
(2) E fZ’Ne )+ f ),
a’“b €a’'€p
3y N ) =zo,
€ ,S
a b
@) MvarifN G0} > 2t 12,
5. .S S .S
a b a b

(5) M varf{f"'N (0} > 20 32,
€ € € €

a'’b a’'"b
M,N
(6) M Var{f S (\)) >~ ¢ () f S (\).
€, ea.ea Sb' b
I+ follows from the above that as M,N + = with M/N+0, f'N () > f o),
5,+5, N
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fM’N (\) - f (A), and fM’N (A) > 0 in mean square and hence in pro-
€_,€ €€ €_»S

a’’b a'’b a’’b
bability.

We now show the consistency of the estimates (3.21) and (3.22).

THEOREM 3.2: Let the model assumptions (3.19) be satisfied. Then as M,N + =

with M/N > 0 the estimates B8, .(}) given in (3,21) and 3:;N(A) given in

M.N
(3.22) are consistent in probability for 8 and fee(x). 0 <X <1,

respectively.

PROOF: Using the definitions of (3.23), write

- M,N M,N -1
BM'N(A) =B + fe's(x)tfss ()3 (3.24)
M,N _ rMN M,N _ r<MN
where fe.s(x) = {fea'sb(k)} and fSS () = {fsa'sb(x)} are r xq and qx q

matrices, respectively. By previous results we know that as M,N + = with

M,N P . . et - M,N p
M/N + O, fSS () > fss(x) which is positive definite, and fe.s(k) > Orxq

where 0rxq isan r x q matrix of zeroes. In view of (3.24) we see that

BM'N(A) is consistent for 8.

To show the consistency of ;Z;N(A) given by (3.22), first note that we

may write the r x r matrix fZéN(A) = {f:'NE (1)} whose elements are given
a’"b
by (3.23 ¢) as

8 s
- t
) ) = B ANy T

m=

Sa

M,N -
fee (A =M N7 j(m)

clan
1 ~N

J(m).N) - 8d

X
NN S my N

Since fréN(l) is consistent for fee(x). it suffices to show that

~M,N

fee (A) - fZéN(A) + 0 in probability as M,N + » with M/N - 0. To see this
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e write

Yy M

A M, N M,N -1 X
:51: fo ) -f 700 =M mzl gN(AJ_(m)"N)gN

5" A \
Ay T8 = By 03

1 A -1 M S X!
[} -
s + 08 - By (WIM Z N2 m NI Qe N

M
- sy ) - BIMT T dSa 18> ) 8"
a8 M,N “y N " j(m),N"*N "7 j(m),N
g m=1
K)
2
” B ) M ? N ygS' LR, . (A)
L. + BM,N A L ~N(Xj(m),N gN (Aj(m),N EBM,N A 81. (3.25)
4y m=1
%
§N We consider the first term of (3.25), the other cases will follow by similar
ﬁ‘|‘
. X

; methods. Expanding gN(AJ(m),N) we have
0,0:
e - ? o yg>' )8 ~ B, (AT MNooes - 8, o1
! M LN jem NN Qjemy 08 7 By AT = B DB - By

3 =
VR,
‘ .
V
W M,N - a '
ﬁg + feS (A8 BM'N(A)] > Or
Wh
i ¥
,.1 in probability as M,N > with M/N > 0 by (3.24) and the convergence results
(2 M, N M, N
: for foo (A) and f (D).
&
a#; We close this section with an application to Markov chains. In particular,
& X
fﬂ consider the macro model given by (3.2) and suppose that we are interested in
"‘
. estimating the transition probabilities pij' We shall assume that detailed
‘ﬁ, transitions are not available, otherwise, the pij may be estimated by MLE
. »
:§. techniques, see Basawa and Prakasa Rao (1980, Section 2.1). Recall that the

)
1

WU ORI AR 3 ORK g O A0 ORI > by "'«"-r"j
B SR e A S S S s R S O S B R o S
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e mode! is of the form

R
S ) r
1 a _
g2, Xpln) = Z X, (n Dpp *epln), 1L, (3.26)
3&;

;51 where Xz(n) is the (aggregate) number of individuals in state £ (over several
vy,

!

:5' independent Markov chains) at time n and eL(n) is zero-mean white noise

ur

0

{ﬁ which is uncorrelated with Xk(n-l) for k=1,...,r/, and r is the number

ﬁﬁ of states. We suppose that data is available in the form {Xl(n), L=1,...,r;
o

g: n=20,...,N-1} and that the total number of individuals in the system, viz.

g! y Xp(n), is fixed. To avoid singularities we remove Xr(n) from the model
¢ -

* (3.26). Let T be the total number of individuals in the system, then for
K3

0

8 £=I'o-..r-‘.

o

.

r=1 r-1 r=1

! Xpn) = TQ1 - Z pJ.z) + g cxj<n-1) + ) Xk(n-l)JpJ£+ eplm).  (3.27)
4 J=1 J=1 k=1

N

4

it r-1 r-1

e Now, put 8, = T(1 - P.p)y S.(n) = X (n=1) + X (n-1) with § (0) =
i i fe T Lo & J
W = ' = '
'g' and let X(n) = (X (n),....Xr_l(n)) » 8 (61.....9r_1) ,

o S(n) = ‘51‘""""sr-1("))' and g(n) = (s‘(n),...,er_I(n))'. We have already
Y seen that g¢(n) and 3S(n) are uncorrelated. In view of (3.27) the model

&

)

Eg (3.26) may now be represented in the form of (3.19), that is
g
= X(n) =8 + P 8(n) + e(n), n> 1, (3.28)
e
4 where P is the (r-1) x (r-1) matrix of unknown transition probabilities
)
R}

:,.

f

sl
B~ 4 o= " 4 A 4 A A LA PR e e L LR e e L L]
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YT pl] Dzl X pr_1'1

AQé If we choose M frequencies, m=1,...,M, #0 in such a

A jtm) N’ ity N
ot way that M > 2(r-1) we obtain the consistent estimate of the transition matrix

e Px) = fM'N(A)EfzéN(A)]-‘,

TRy XS

t
R ) (A )

- M.N -
«Ys where f ()) jem N

XS J(m) ,N"~N
" m=1

[
=
[

[ I 4

0 feg 1) =

t',’:O' m=1

S S!
IND j(my NN A

[
k4

1
~ 2

j(m).N)'

N=-1
X -1/2
= N
££. gN(Aj(m),N) nZo §(n)W(n.AJ(m).N) and

“1/2 N-1 r-1
) =N Y {X(n=1) +# | X(n=1)}IW(n,x, ).

S
dur .
) N " j(m),N nel k=1 J{m),N

.
Ll
oA

In this case we also obtain a consistent estimate for ¢, namely,

Py
N

. V.’H'

.
& S
"y

r-1
eL(A) = T - J§1 ij(A)). &=1,...,r-t,

“f_‘fﬁa, L

e

P

where Sjl(x) is the j€-th element of P(A). The consistent estimate of the

i
!
¢

e > i
o

N Y
2 A

error spectrum is

R

s
e

-
-

- i
ﬁv- :
P |
4‘ -~ § AP B\ AR ) e e e e T hi 0 )

AN Y F . PN : » a2y T P L VT e, 0 T ey P b
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f t_:(A) = fXX (A) - POOF Pr(x).

€, SS

The actual implementation of this estiamtion procedure is then based on the

methods described in the Appendix A.

. e A" apy 1‘,‘"'.'"? -, w * .
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APPENDIX A

4 In this appendix we discuss the computation of the finite Walsh-Fourier
transform for samples of length N = Zp, p >0 integer. The discrete Walsh
‘ functions are calculated via the Hadamard matrix, H(p), which is defined to

be the symmetric orthogonal N x N matrix whose (u,v)-th element, u,v =0,1,...,N-1,
p-1 u.v.

is equal to ¢(u,v) = 1T (-1) J J where the binary representations of u and
Jj=0

v are given by (up_].up_z.....uo) and (vp_l.vp_z.....vo). respectively,

- - .

b .-

u‘j and vj are either 0 or 1. For example, with N = 8, the (1,5) element

of H(3) is ¢(1,5) = (-1 o _1 Jhereas the (3,7) element is

$(3,7) = (-l)0+1+' = 1. The Hadamard matrix gives the discrete Walsh functions

e

e

as rows (or columns) in what is called natural or Hadamard ordering. To obtain

.
)

-
° r2

the Walsh functions in sequency order, we can reorder the rows of H(p) according

to the number of sign changes. We denote the sequency or Walsh ordered Hadamard

matrix by H_ (p). An alternate method of obtaining Hw(p) from H(p) uses

W

"bit-reversal Gray code" to rearrange the rows, however this is essentially the

i s M

same technique as counting the sign changes, see Ahmed and Rao (1975) for

-
L)

details. Since these approaches involve counting sign changes, they are not

-
3

very efficient procedures. We shall discuss a fast Walsh-ordered Hadamard trans-
y form in a2 moment. The Hadamard matrix can be generated recursively, H(0) =1,

and

. [ Hk) H(k)

\: H(k+l) = » k30,1,2....
* H(k) ~H(k) |

so for example

~ g

s » Y 0
! dety hoedy kil X
K n..'i‘e‘l.ull 4 "f‘i".i" e AYE . ,"‘,U. N Ll‘-“‘f"‘,:‘*.l"" ‘."b

vy U e Wy i Q)
) ‘,‘a";'\55‘1’\"‘l.;l.\.al.gtl.r,,lf‘u

T ) .
) '!""‘:‘-""‘\w.'.l.?':":'l’w Lt
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Sy

Lt ial e

T
B

[ H(1) = [ ! ! and H(2) =

— ot —

Denote H(2) = EQO(Z),Q1(2),D (2),h,(2)] where Qi(Z). i =0,12,3 is the

2 3

204 i-th column of H(2), then the corresponding Walsh-ordered Hadamard matrix is

] HW(Z) = EQO(Z),92(2),g3(2),b‘(2)3. The procedure of obtaining the Walsh-ordered
Hadamard transform from its definition either requires storage of the Hadamard

$§4 matrix, or recomputation whenever the elements of Hw(p) are needed. Hence,

,&“ either the sample length is restricted to about p = 10 or 20, or the procedure

L2 is extremely slow. There are, however, fast methods which can reduce the

; }3 number of computations (additions and subtractions) by about 2p-l/p times less

‘xl than by using the definition. The method we discuss here may be found in Ahmed

and Rao (1975, Chapter 6) who also gives a computer subroutine. The Walsh-

;;, Hadamard matrix can be computed as

)
Hw(p) = I Hi(p) « B (A1)

e i=1

o where

'? L) .-
.': Hi(P) = F s = 2| !

y
)

‘éa with
3

Ol". -
"efl e } |,v|';‘ L
AL R \l‘
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| and Is being the s x s identity matrix. The matrix B in (A1) is a matrix
ﬁ which bit-reverses the order of the data. For example, with N = 23 the

Q‘ bit-reversal of 1 = (0,0,1) is 4 = (1,0,0), and the bit-reversal of

‘. 3=(0,1,1) is 6 = (1,1,0) so that X(1) is exchanged with X(4) and X(3)
- is exchanged with X(6) in the data vector. !f X = (X(0),...,X(N-1))"' s

E) the data vector, N = 2p. the fast finite Walsh-Fourier transform is computed

. as

o -1/2 -2 P

0 = =
o gN(AN) N Hw(p)x N IIl H.(p)+B X (A2)

'.'
C‘.‘.
: where AN = (O/N,1/N,...,(N-1)/N)', For example, if N = 23, the Walsh-ordered

78 Hadamard matrix can be decomposed as

& Hw(S) = 1

where

I AW FENA b 't ---.«.«-r -~ » ’u>.,- v..'x.‘ la Pl Aw ®
D A LN 3 .c]"viﬁﬁ",na_ ,o,‘.g,t.\ W, '.l X4

\ )
"'Hq"“ Yy ‘:!"’I".%U’H a Bitits k\u“"ﬂ‘ Aty \l At i.c tl.ng't Q0 "b‘&i )
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%
)
q 1 0o o 0t'0 o0 o0 o017

©o 0o o0 O0 .1 0 ©0 0
A o 0 1 0'0 0 0 O
3 ) '
4 B=|0_0 _0_0 .,0_ 00 _1_ 0|
& 0 1 0 0 '0 0 0 0

]

f 0 0 0 0,0 1 0 0
Js 0 0 0 1 v 0 0 0
K 1
;' | 0 0 0 0o, 0 0 LI
‘l
‘:’ The vector of periodogram ordinates is obtained by squaring each element
\
R of d\(dy) given in (A2). Let I (m) = dﬁ(m/N) denote the m-th periodogram
. N-1
H ordinate, m =0,1,...,N-1. It is seen that | (m) = I T(jW(j,m/N) where
¥ N-1 j=0
\ ;(j) =N} Y X(k)X(j ® k). Employing relationships (2.5) and (2.6) we may
1) k=0
Y write
[}
‘ X o N
K T = NTLOL 1 mWm, /N . (A3)
! m=0
y) Thus, for large N, the quickest way to compute ;(j) is to use the fast Walsh-
'
; Fourier transform twice, once to compute IN(m) and once to compute the right
)
o hand side of (A3).

- .
$ 00
¢ ; .-'h‘..'s.!':‘?'p'
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‘§§~ APPENDIX B
o
h.. : In this appendix we prove the central limit theorem stated in Section 2
o
?Q. which is based on condition (2.4) and Assumption 2.3. The proof of the theorem
LN
“ is based on a martingale central |imit theorem given in Brown (1971, Theorem 2)
N
I and a limit theorem for approximating sequences given in Anderson (1971,
? "
sa‘ Theorem 7.7.1). We now state and prove t+he theorem.
@
.ﬁ§
&; THEOREM B: Let {X(n); n = 0,%1,%+2,...} satisfy condition (2.4) and Assumption
!
hY
gﬂ 2.3. Then the discrete Walsh-Fourier transform, dN(A). converges in distri-
£
%" bution to a normal variate with mean zero and variance f(\) given by (2.3).
o -2 N1 172 g
pl PROOF: Fix X e [0,1) and write dy(x) =N /2 Z X(n)W(n,1) = ) Y,
n=0 n=1
o Choose an integer k such that 2« < k < N and put T = [N/k] where L[] is
[ .
A
&Q the greatest integer function. For |j = 1,2,...,T define
b
fﬁ' Y =y +y e + Yy and Z =y +y e Y.
& Jrk (j=1)k+1 (j-1)k+2 Jjk=k L Jk=ec+1 Jk-x+2 Jjk
Eﬁ and let u = N1/2 % z and v =N12 + + +y,)
5 et UYeon L%k k,N YiTe1 ¥ Yime2 T o000 T VN
e§=‘ Jj=1
i Clearly dy(a) = N '/2 { Y + Vv We will show that v +0 in
i Y Oy = b kUGN Y VKON koN
o mean square as N -+ = uniformly in Kk, U N 0 in mean square as k + =
c":-‘.‘l - !
gﬁ; uniformly in N, and N 1/2 y v,  Converges in law to a normal variate as
Ry j ’
fé? N+« and k + ». Thus, the theorem will follow from Anderson (1971, Theorem
*§
— 7.7.1).
8
sod Using Minkowski's inequality with r = N-Tk < k and the fact that
@ ‘ﬁ'
RS |Wen, 0| =
)
Al
a“ﬁf
. l_‘
9y
,:’
W
O e A N e OV D R DY N A S W NS NI S
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2 12 _ 1/2 2,1/2
15 E(v, \} N2 LBy g, * oee + v

N‘ - r
wae cN25 ErxekTep ]
=

2}1/2

from which we obtain

2 2

2 -1 -1
RO E{vk'N} <N y(0) < KN Ty (0)

D
"&* and hence the desired result follows. In a similar manner we can show that

- E{Ui N} < TN-IKZY(O) < k-ikzy(O)

=

y f:‘f, Pl

+o0 obtain the desired result for uk N

To establish a central limit theorem for N

e
.

-1/2 Y we use a martingale

Jok
J=1
central limit theorem found in Brown (1971, Theorem 2). We shall follow Brown's

i~ —f

x

-

k,T

! o-field generated by {X(j), j < n}. Then, {Sk,T'

‘W a martingale. To see this note that

T
notation. Let k be fixed and let S = ) Yj K recall that Fn is the
=1

A A AT
{"'J)

-
>
-

s 8

F T=1,2,...} form

kT'K;

D =
: ECSy 11 | Frai? i
o

WY The terms in YT+l K are {X(n)W(n,x), n=kT + j; j=1,2,....kx}. We

are given that E{X(kT+j) | F

ikt E ! et

Il o~ —f

} =0 a.s. and since Fk

kT+ j-x T-KC: FkT+j-o<’

1 < j ¢ k=x. we have

Vi, 1 = 1 = «S.
) o EIX(kT+j) | FL b = EE{X(KT+j) | FkT+J_K}| Feoe =0 s

" XN PETnT
SO AN T Ao At
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.' and hence E{Y.r . kl FkT K} = 0 a.s. as was to be shown. Following Brown (1971),
W 2 _ 2 2 _ g2 . . . 2

¥ put vk.T Z E(Y< IFk(J I)-) and ST Evk,T A typical term in Vk,T
[y . -) e i

g 's E{Y(J—l)k+£y(j-l)k+m| Fr(j-ndr Tebmekms 1 jeT. Let

N ) n, = (j-k + £ and n, = (j-1)k + m, then by hypotheses of the theorem,

(S';‘

L) =

‘::. E{yn1yn2| F(J._”k_K} W(n, @ n,,A)E{X(n )X(n,) | Fli-tkec]

o |
_, - - |
& = Wn, @ nz.k)y(n2 nl) a.s. |
e = Ely_y_ }.

I

[}

2 2 2 2 . .

.' = = -

é Hence, Vk,T J§1 EYJ. EVk.T sk.T a.s. The application of Theorem 2 of

B Brown (1977) entails showing that as T + =,

o 22

:'t (i) kaT p1,and

3 I

A - -

v Gi) sy ‘21 E{ j,kI(IYJ.kI > esk..r)} + 0

e

'

‘ for any ¢ > 0, where |I(+) is the indicator function. We have aiready

)

*,'?1 established (i) and we proceed with establishing (ii). First, we show that

T sup_ EC|X(n )|2+6 <o for some § > 0 implies that sup,. E{[YJ k|2+6 ..
::: Let ne = (j=k + £ and a(nz) = W(nz,)\). Then by Mlnkowskl s inequality
2+8.2+§ 248 .2+68

1= =

i E{IYJ.kI Y0 = Ellatn DX(n) + Ll + a(nk_K)X(nk_K)l }

4~

Lt ke 1

. -K

" < X E{|X(n £)|2+6 2+§

W)

) 1

»

k’ < (k=x)Csup, E{IX(n)I2+<S 28
b
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so that for any |,
E{IYJ k'2+5} < (k-k) 2+ sup, E{IX(n)|2+6} < @
as was to be shown. Following a similar argument to the one above, we can
show that EY? K is uniformly bounded, and since EY? K does not vanish as
J * > we see that sz T = 0(T). Also, one can show that since
supj E{IYJ k|2+6} <« » for some 6 > 0, there exists a random variable A
with EYi < » such that
B2 1Y, | > w < EY2I(Y,] > w)
j.K Jk! = - "k k! =

for all j and all u > 0. See Stoffer (1985, Lemma 3.2). Thus,

-2 1 2 -2 YZ

S T jZ1 E{YJ’kI(IYJ’k| 2es, P} <5 ST E Y2 es, 1)} >0
as T + =, Hence by the Brown (1971) martingale central limit theorem we have

- T - _ T
that for fixed k, T /2 7 Y? = NETIZ T2 g Yi . converges in
J'=] ' J=] ’
law to a normal variate whose variance depends on k. as T + » or
T
equivalently N » =, Clearly then, for fixed k, (N‘/ZT 172, '/Z)N 1/2 ) Yﬁ K
=1

converges in law to a normal variate as N + o, Letting k + = establishes

the desired result.

‘ n -'.‘_ .yv- “v v -,\_v‘ -..'\. .>.’ .“ ‘ p - 0 N
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